PROJECT DESIGN AND IMPLEMENTATION SUCCESS IN RWANDA

A CASE STUDY OF MUYEBE II PROJECT

KWIZERA YVES CHRIST

MBA/3759/12

A Research Project Submitted in Partial Fulfilment for the Award of a Degree in Master of Business Administration (Project Management Option) of Mount Kenya University

MARCH 2015
DECLARATION

This research study is my original work and has not been presented to any other Institution. No part of this research should be reproduced without the authors’ consent or that of Mount Kenya University.

Student Name: **KWIZERA Yves Christ**

Sign ____________________ Date ______________

Declaration by the supervisor(s)

This research has been submitted with our approval as The Mount Kenya University Supervisor(s).

Name: **Dr KAMANDE Mercyline**

Sign ____________________ Date ______________
DEDICATION

To my mother RUTAYISIRE Spéciose for all her courage, support and the role model played by her in my life and that of my brother and sisters.
ACKNOWLEDGEMENT

I could not have completed this research proposal and made a step to my dream, without moral, material and financial support or otherwise, given by various people who deserve recognition and thanks. While those I am indebted to are too many to mention individually, some deserve special recognition.

I extend my thanks and heartfelt gratitude to my supervisor and facilitator, Dr KAMANDE Mercyline, for the unreserved commitment, academic guidance / counselling and support she extended to me. Special thanks go to my mother RUTAYISIRE Spéciose whose financial support triggered my desire to start and pursue this course.

I wish to, most sincerely, recognize the staffs of Muhanga District who were not hesitant and cooperative to provide me with the required information until this stage.

My sincere and heartfelt thanks go to my brother and sisters RUKUNDO Thierry, UWONKUNDA Evelyne, RUTAYISIRE Aline Jenny and RUTAYISIRE Sandrine Jessy for their unending love, care, support and encouragement.

I would also like to take this opportunity to express my sincere gratitude to my classmates for their team-work, encouragement and positive support.
ABSTRACT

This study entitled “Project design and implementation success in Rwanda” had the main objective to show the extent to which a project design influences its implementation. It has been done through meeting different specific objectives those were to analyze the project design of “Muyebe II Integrated Environmental Management Project”; to assess the success of “Muyebe II Integrated Environmental Management Project” to examine the effects of “Muyebe II Integrated Environmental Management Project” design to its implementation success. This research will benefit to different parties, to the researcher it will benefit in improving the knowledge about the design of projects and the effects it has on their implementation success; to the academics by availing a copy of this research project in the library of Mount Kenya University it will provide information for students in School of Business about the project design and implementation success in Rwanda, and it will serve as the basis of reference to the future research and advanced studies in that school; to the government of Rwanda, and NGOs or other OECDs that fund or implement projects this study will serve as a document holding information to follow when formulating projects drafts. The result of this study will guide them as the basis of information for decision makers; to the people of Rwanda the results of this study will permit the Rwandan population to be more motivated and waking their awareness on the projects that are mainly destined to them. For this study the explanatory research has been conducted where the purpose was to identify any causal links between the factors or variables that pertained to the research problem. The researcher has conducted the research on the basis of a selected case study and both primary and secondary data were used. The target population was 717 households in Muvumba Cell, in the proximity of Nyabarongo River banks who were living in difficult conditions. Slovin’s formula was used to determine the sample size. For this study to be reliable a Test-retest reliability was used which is a measure of reliability obtained by administering the same test twice over a period of time to a group of individuals. For a test to be reliable, it also needs to be valid. For this study to be valid the researcher conformed to a validity aspect Face Validity which ascertains that the measure appears to be assessing the intended construct under study. After data was collected from field it was grouped according to similarities in order to give it more sense, then these groups were statistically studied and put in tables to make them more meaningful to the researcher for an easy quantifiable and summarized form. After analysis, assessment and examination of findings, the researcher has concluded that MIIP design was correlated to its implementation; it was correlated to timeliness at 0.93 and outcome quality at 0.87. The two were perfectly positively correlated.
TABLE OF CONTENTS

DECLARATION .. ii
DEDICATION .. iii
ACKNOWLEDGEMENT ... iv
ABSTRACT ... v
TABLE OF CONTENTS .. vi
LIST OF TABLES .. viii
LIST OF FIGURES .. ix
OPERATIONAL DEFINITION OF TERMS ... ix
LIST OF ABBREVIATIONS AND ACRONYMS .. x

CHAPTER ONE: INTRODUCTION ... 1

1.0 Introduction ... 1

1.1 Background of the study .. 1

1.2 Problem Statement ... 3

1.3 Objectives of Study .. 5

1.4 Research Questions ... 5

1.5 Significance of the Study .. 6

1.6 Limitations of the Study .. 6

1.7 Scope of the Study ... 7

1.8 Organization of the Study .. 8

CHAPTER TWO: REVIEW OF RELATED LITERATURE .. 9

2.0 Introduction ... 9

2.1 Theoretical Literature ... 9

2.2 Empirical Literature ... 18

2.3 Critical Review and Research Gap Identification .. 24

2.4 Theoretical Framework .. 25
2.5 Conceptual Framework ... 26
2.6 Summary .. 28

CHAPTER THREE: RESEARCH METHODOLOGY ... 29

3.0 Introduction .. 29
3.1 Research Design ... 29
3.2 Target Population .. 30
3.3 Sample Design ... 31
3.4 Data Collection Technique .. 33
3.5 Data Analysis Procedure .. 34
3.6 Ethical Consideration .. 35

CHAPTER FOUR: RESEARCH FINDINGS AND DISCUSSION .. 37

4.0 Introduction .. 37
4.1 Demographic Characteristics of Respondents .. 37
4.2 Presentation of Findings .. 39
4.3 Summary .. 57

CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 57

5.0 Introduction .. 58
5.1 Summary of Findings ... 58
5.2 Conclusions .. 62
5.3 Recommendations ... 63
5.4 Suggestions for Further Study .. 64

REFERENCES ... 65
APPENDICES .. 67
LIST OF TABLES

Table 2.1: Project procedure description ... 10

Table 3.1: Target population of the study .. 30

Table 4.1: Responses Obtained From Field Survey ... 37

Table 4.2: Respondents Age Distribution .. 39

Table 4.3: Respondents Budget Analysis of MIIP .. 40

Table 4.4: Respondents Remuneration Satisfaction Analysis .. 42

Table 4.5: Respondents Scope Assessment of MIIP .. 44

Table 4.6: Respondents Quality Standard Assessment .. 45

Table 4.7: Respondents Time Allocation Examination of MIIP ... 49
LIST OF FIGURES

Figure 2.1: Conceptual framework of the study ... 27

Figure 4.1: Respondents Gender Ration ... 38

Figure 4.2: Respondents Implementation Participation in MIIP .. 41

Figure 4.3: Respondents MIIP Post Implementation Effects Analysis 43

Figure 4.4: Project Staff Experience Gained in MIIP .. 46

Figure 4.5: Respondents MIIP Performance Assessment ... 47

Figure 4.6: Respondents Timeliness Success Assessment of MIIP 48

Figure 4.7: Respondents Cost Control Examination of MIIP .. 50

Figure 4.8: Respondents MIIP Floods Solving Examination ... 51

Figure 4.9: Respondents MIIP Landslides Solving Examination .. 52

Figure 4.10: Respondents MIIP Low Productivity Solving Examination 53

Figure 4.11: Respondents MIIP Erosion Solving Examination ... 55

Figure 4.12: Respondents Environmental Protection Role Examination in MIIP 56
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC</td>
<td>Development Assistance Committee</td>
</tr>
<tr>
<td>MBA</td>
<td>Master of Business Administration</td>
</tr>
<tr>
<td>MDG</td>
<td>Millennium Development Goals</td>
</tr>
<tr>
<td>MIIP</td>
<td>Muyebe II Integrated Environmental Management Project</td>
</tr>
<tr>
<td>MINALOC</td>
<td>Ministry of Local Government, Community development and Social Affairs</td>
</tr>
<tr>
<td>MKU</td>
<td>Mount Kenya University</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Co-operation and Development</td>
</tr>
<tr>
<td>PCM</td>
<td>Project Cycle Management</td>
</tr>
<tr>
<td>REMA</td>
<td>Rwanda Environmental Management Authority</td>
</tr>
<tr>
<td>SMART</td>
<td>Specific, Measurable, Ambitious yet Achievable, Realistic and Time bound</td>
</tr>
<tr>
<td>SWOT</td>
<td>Strengths Weaknesses Opportunities and Threat</td>
</tr>
</tbody>
</table>
OPERATIONAL DEFINITION OF TERMS

Activities: Action taken or work performed within a project to transform means into results.

Beneficiaries: A limited group among the stakeholders, who will directly or indirectly benefit from the project.

Project Design: Project design is a phase in Project Cycle aiming to define the desired future situation of the affected population and to determine the objectives, strategies and activities needed to achieve it, taking into account local capacities, and the constraints and risks.

Project purpose: The reason for or focus of the project, describing the improved situation which the project is expected to achieve.

Project success: A successful project is the accuracy of the technical solution, the acceptance by all the parties involved of the need for, and the approach to implementing the project.

Project: is a unique process, consisting of a set of coordinated and controlled activities with start and finish dates, undertaken to achieve an objective conforming to specific requirements including constraints of time, cost and other resources.

Results: Products of the activities that together achieve the project purpose. Not only physical outputs also starting to enjoy sustainable benefits.

Stakeholders: Groups of people, organizations and institutions who have a direct or indirect interest, or a role, in the project, or who affect or are affected by it.

Sustainability: In the context of a single project, the continuation of its benefits and impact after the project itself has ended.
CHAPTER ONE: INTRODUCTION

1.0 Introduction

This chapter will open the study by covering the background of the study, problem statement, objectives of study, research questions, significance of the study, limitations of the study, scope of the study and the organization of the study.

1.1 Background of the study

This study aimed to interrogate stakeholders of “Muyebe II Integrated Environmental Management Project” in order to come out at the end with a better knowledge on the extent to which the design of a project can influence the success of its implementation.

Project design also referred to as project preparation, project formulation, or project write-up comes about when an idea is born through some approaches and methods; the idea is transformed into a problem statement this result in the selection of a project from many solutions presented in the problem statement.

A successful project is a one addressing real problems that are priorities for the stakeholders, with a competent and motivated project team having sufficient management and organizational support, based on proper and participatory planning with the different parties involved sticking to their commitments.

This study aimed to assess the relationship between the project design and its implementation success. This has been done on the base of a case study that is a project implemented in Nyabinoni sector, Muhanga district, Southern Province in Rwanda. The project was named “Muyebe II Integrated Environmental Management Project”.

1
Based on this case the researcher has assessed the elements of project design and their influences on the project implementation success.

This study has shown how the Project Design in the context of Project Cycle Management (PCM) influences the success of implementation of that project.

PCM is designed to ensure relevance, feasibility and sustainability. The PCM system makes the project concept and context clear and visible, and thus enables better monitoring and evaluation. At each stage in the project cycle, these issues are examined, revised as necessary, and feedback is provided to improve project implementation. The monitoring, reporting, and evaluation components of the project cycle are essential for effective implementation, however all these are the results of a strategic design (Dennis, 2007).

Therefore the most important point in the project cycle is the design phase, and this aspect of the project cycle has been treated in the most depth in the course of this study by assessing the extent to which it influences the implementation success of projects.

Project Cycle Management obliges practitioners in project design to focus on the real needs of the beneficiaries by requiring a detailed assessment of the existing situation, and by applying the logical framework method. From the outset, aspects assuring sustainability and critical assumptions are incorporated into the project design for a most assured implementation success (Jason, 2007).

The researcher has assessed the relationship between a successful project implementation and its design. The determination of who needs or wants to be involved, and when and how it can be achieved is the first step in any project design phase. The researcher has studied the output of this aspect.

It is fundamental that enough time be budgeted to explore stakeholder views, values and perspectives so that a clear understanding of the human and institutional landscape can be established.
Once stakeholder views are understood, a decision can be made on whether to pursue a project for a forecasted implementation success (Johnson, Scholes & Whittington, 2005).

The study has focused on the relationship between the design and implementation success of a project, the researcher has selected three criteria to evaluate success that integrates project schedule, cost and business goals. Talking about business goals in such environmental protection project the researcher has assessed the intended goals of the implementation of the project to the beneficiaries and the experience the project implementation has left to the project staff.

The goal of stakeholder analysis one of the elements of project design is to develop a strategic view of the human and institutional situation, and the relationship between the different stakeholders and the objectives identified. Stakeholder analysis is a continuing process that should engage different groups, as issues, activities, and agendas evolve which brings to a successful project implantation (Prasanna, 1987).

As the most important point leading to the implementation success in the project cycle its design phase, the researcher treated this aspect in depth by analyzing its elements including budgeting, timing, scoping and project outcome all these and others globally analyzing their influences on the project implementation success defined by stakeholders needs satisfaction which will be grouped into three elements for a better carrying of the study including deliverables, procedurals and staff success.

1.2 Problem Statement

There have been management issues raised by projects failures. Those problems are results of poor project designs. In this study the researcher reviewed and criticized the relationship between the project design and its implementation success.
PCM arose out of an analysis of the effectiveness of development aid undertaken by the OECD’s (Organization for Economic Co-operation and Development) Development Assistance Committee (DAC) during the late 1980s. Evaluation findings indicated that a significant proportion of development projects had performed poorly. In fact, the long-term benefits for the beneficiaries were much fewer than expected. The evaluations also found that the main causes of failure were poor designing and preparation of projects (Meredith & Randolin, 2000).

Therefore this study has been conducted to explore the relationship between the design and implementation success of projects. The researcher needed to have a better understanding of the project design phases in a project cycle management, to examine the relationship between the project design and implementation success, and to show the extent to which the design of “Muyebe II Integrated Environmental Management Project” has influenced its implementation.

In doing so, the researcher has improved the knowledge on the field of project management, and has improved capacity to design projects properly toward a successful implementation. Therefore as a practitioner the researcher has recommended for the future studies and has improved the project management field which is the subject of specialization.

A successful project is the result not only of the accuracy of the design project, but also of the acceptance by all the parties involved of the need for, and the approach to implementing the project (Cleland, 1999).

Therefore the researcher was motivated to conduct this study to deepen the research with the basis of this study the case selected to conduct it, for coming out with the knowledge on the real influences of the project design to its implementation success and give at the end the recommendations to the future researchers and practitioners of project management the tips for a better prosperous project designing.
1.3 Objectives of Study

This study has been carried out with respect to two types of objectives that were classified into general and specific as follows:

1.3.1 General Objective

The general objective of this study was to portray the relationship between the project design and project implementation success.

1.3.2 Specific Objectives

This study has been conducted in order to achieve the following specific objectives:

i. To analyse the design of “Muyebe II Integrated Environmental Management Project”.

ii. To assess the success of “Muyebe II Integrated Environmental Management Project”

iii. To examine the effects of “Muyebe II Integrated Environmental Management Project” design to its implementation success.

1.4 Research Questions

To achieve the above research objectives the appropriate research questions have been answered.

i. How was “Muyebe II Integrated Environmental Management Project” designed?

ii. How successful is “Muyebe II Integrated Environmental Management Project”?

iii. What are the effects of “Muyebe II Integrated Environmental Management Project” design to its implementation success?
1.5 Significance of the Study

This study was a response to the deepest enthusiasm towards the success of projects. In connection to the core of the study, this research will benefit to:

The researcher will benefit in improving the knowledge concerning the design of projects and the effects it has on their implementation success.

To the academics by availing a copy of this research project in the library of Mount Kenya University it will provide information for students in School of Business about the project design and implementation success in Rwanda, and it will serve as the basis of reference to the future research and advanced studies in that school.

To the government of Rwanda, and NGOs or other OECDs that fund or implement projects this study will serve as a document holding information to follow when formulating projects drafts. This document will guide them as the basis of information for decision makers.

To the people of Rwanda the results of this study will permit the Rwandan population to be more motivated and waking their awareness on the projects that are mainly destined to them.

1.6 Limitations of the Study

This part indicates challenges anticipated or faced by the researcher. This includes time and financial limitations that influenced the scope of the study, data inaccessibility and unanticipated occurrences (Donald & Delno, 2006)

It was difficult to access some documents from government institutions due to their confidentiality; this was anticipated by the researcher based on the experience from the previous research made and on the constraints that were met while writing the proposal, but as the researcher was in possession of the research authorization letter from the school the issue was alleviated.
The expected dispersion of “Muyebe II Integrated Environmental Management Project” beneficiaries at the field and in the rural area where infrastructures are not easy to use such as roads, comes true because it was not easy to reach to the sample respondents, this issue has been alleviated by according the survey enough time.

All these were anticipated by the researcher to be faced at the next stage of the research while writing the proposal based on the previous research that have been carried in the past.

1.7 Scope of the Study

In terms of concept the study has shown the extent to which a project implementation success is related to its design, therefore delivering the expected output to the beneficiaries.

In terms of content the study has captured and presented in a meaningful manner some project design elements and their influence on the project implementation success.

Geographically the study has clarified the relationship between the project design and its implementation success with the case of ‘Muyebe II integrated environmental management project” located in Muvumba Cell, Nyabinoni Sector, Muhanga District, and Southern Province of Rwanda as the basis.

As far as time interval to be covered by the study was involved, the researcher found that there was relationship between the project design elements selected for the conduct of the study and their influences on the implementation success of ‘Muyebe II Integrated Environmental Management Project” over the period of three years of its implementation i.e. from 2009 to 2012.
1.8 Organization of the Study

Chapter one has introduced the study, chapter two reviewed the related literature, chapter three presented the research methodology to be used, at this level the research proposal was completed, chapter four presented the findings of the study and their discussion while chapter five and the last of the study presented the summary of findings, conclusions and recommendations.
CHAPTER TWO: REVIEW OF RELATED LITERATURE

2.0 Introduction

The literature review is a critical look at the existing research that is significant to the work that you are carrying out. The overall purpose of this review is to identify gaps in current knowledge, to increase the breadth of knowledge of this subject area and to build on existing knowledge and ideas.

This chapter covers definitions of key concepts and different theories about them, theoretical framework, and it will outline the direction of research and place this research project in a context, demonstrating its relevance by making connections to a body of knowledge. It will also show the intellectual context for this study.

2.1 Theoretical Literature

2.1.1 Project cycle

The way in which projects are planned and carried out follows a sequence known as the project cycle. The cycle starts with an assessment that may lead to the design, implementation, review and evaluation of an intervention. Interventions are identified in the context of an agreed strategy. The project cycle provides a structure in which stakeholders are consulted and relevant data are gathered so that informed decisions can be made at key stages in the life of the project. The way a project cycle is represented can vary from one organization to another (Havey, 2005).
2.1.2 Project Cycle Management (PCM)

Project Cycle Management (PCM) is the term used to describe the management of activities and decision-making procedures applied during the life cycle of a project including key tasks, roles and responsibilities, key documents, and decision options aiming to maximize the benefits of projects for the beneficiaries.

These guidelines are based on integrated project cycle management. This approach helps those in charge of project planning, implementation and evaluation to focus on the elements and factors considered most relevant to success of a project.

The Project procedure provides description of how project task shall be done and the sequence of these tasks.

Table 2.1: Project procedure description

<table>
<thead>
<tr>
<th>Phases</th>
<th>#</th>
<th>Stages</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation</td>
<td>1</td>
<td>Identification of project idea</td>
<td>Goals identified & Objectives are determined</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Preliminary selection</td>
<td>Ideas are developed into alternative concepts, Technical solutions are identified</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Feasibility</td>
<td>Feasibility is assessed, evaluated and classified</td>
</tr>
<tr>
<td>Implementation</td>
<td>4</td>
<td>Detail project planning</td>
<td>Project planning with schedules, cost estimates are done</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Start up & Implementation</td>
<td>The project is kicked off with time, cost & performance specifications</td>
</tr>
<tr>
<td>Operation</td>
<td>6</td>
<td>Project operations</td>
<td>Product, facility or system kept operational at all the time and cost</td>
</tr>
</tbody>
</table>

Source: (Morris, 1987).
The component of a project needs to be precisely defined as to character, location and time. Both the resources required in the form of finance, materials and institutional development are estimated in advance. Cost and benefits are calculated in financial and economic terms or defined with sufficient precision to permit a reasoned judgment to be made as to optimum set of actions (Morris, 1987).

2.1.3 Project Design

Project design is a phase in Project Cycle aiming to define the desired future situation of the affected population and to determine the objectives, strategies and activities needed to achieve it, taking into account local capacities, and the constraints and risks (Harrison, 1989).

2.1.4 Project Design in PCM

It is emphasized that project design is an interactive process encompassing all potential stakeholders (government, local communities, NGOs, the private sector, etc.). This is essential to ensure project viability and sustainability. The project formulation process can be time consuming and costly. At the same time, project sustainability depends more on thorough initial planning and good stakeholder analysis than on any other factor.

A SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis is widely used as tool for exploring the constraints and opportunities of a project. It can be used to test the completeness of a goal. Strengths and weakness refer to those strengths and weaknesses within the project. Opportunities and threats refer to the opportunities for and the threats to the project achieving the goal.
The project design team normally conduct or coordinate the following activities: background research on socio-economic and environmental issues relating to the project intervention, interviews with local decision-makers or key individuals likely to be involved in project implementation, rapid field assessment to ascertain environmental conditions and issues to be addressed, participatory information gathering and priority setting workshops with local communities, voluntary groups, and key government agencies.

Therefore design of projects should facilitate the effective progress of a project through the project cycle. A good design gives a project the maximum possible chance of achieving its goals, and should ensure or facilitate among others: a broad basis of support among beneficiaries and stakeholders, Accountability to project donors, a framework for periodic project evaluation, constant review of progress and adaptation of the project to unforeseen issues, Learning and mechanisms for feeding lessons back into the network and an effective communications strategy to magnify the project’s impacts by reaching decision makers (Crowford, 1997).

2.1.5 Project Design Variables

Among other procedures of management, designing is the most important and the basic managerial aspect. If this aspect is properly implemented, and controlled, then potential for achieving final objectives of an enterprise can be assessed. In addition to being a tool with which to determine appropriate actions to achieve stated goals, designing is an informative process which can be used to learn, in advance, about hidden as well as obvious requirements of a complex venture. Proper designing establishes a solid foundation for the remaining managerial aspects. (Kijne, 1995), contends that: "designing focuses on the future: What is to be accomplished and how? In essence, it includes those managerial activities that determine objectives for the future arid the appropriate means for achieving those objectives.
The outcome of the designing aspect is a plan, a written document that specifies the courses of action the firm will take." Further elaborating, he continued to say as: "The designing aspect requires managers to make decision about four (4) fundamental elements of plan: objectives which specify future conditions to be achieved; actions, which are the means, or specific activities planned to achieve the objectives; resources, which are constraints on the course of action; and finally implementation, which are ways & means to implement the intended actions."

The above definition suggests four concepts: goal, scope, definiteness, and direction. Since designing is performed to achieve, "desired results", then it is purposeful activity that must operate on some object (s).

2.1.6 Project Success

Based on discussions with a wide variety of project participants and observation of people’s actual behaviours in real-life projects, there are classifications of the different definitions: first a project can be defined as a success if it delivers all or most of what it said it would (the scope), regardless of schedule or budget performance; second a project can be defined as a success if it delivers what it said it would, on schedule and/or within the agreed budget; third a project can be defined as a success if it delivers what it said it would, on schedule, within the agreed budget and to the expected quality standards; fourth a project can be defined as a success if it delivers on all agreed project objectives, scope, schedule, budget, quality or outcomes based (i.e. goals to be achieved or strategic positions to be attained) and last a project can be defined as a success if the product produced by the project creates significant net value for the organization after the project is completed (Elonem & Arto , 2003).

Here are some key ingredients for project success: Proper and participatory planning, Addressing real problems that are priorities for the stakeholders, A competent and motivated project team, Sufficient management and organizational support and The different parties involved sticking to their commitments.
(Rockart, 1979) developed a three step procedure for determining which factors contribute to meeting organizational goals. His study reveals that many executives tend to link in terms of “what does it take to be successful” in their business rather than in terms of purposes, objectives, and goals. Consequently the key question in this method is, “what does it take to be successful in the business?” The three main steps in the process are:

Generate critical success factors (CSFs): The key question in this step is, “what does it take to be successful in the business?”

Refine (CSFs) into objectives: The key question in this step is, “What should the organization’s objectives and goals be with respect to the critical success factors?”

Identify measures of performance: The key question in this step is, “How will we know whether the organization has been successful on this factor?”

This has allowed the researcher to assess how ‘Muyebe II Integrated Environmental Management Project” featured with these elements.

2.1.7 Seven Ways to Measure Success

One of the most common challenges for project managers is determining whether or not a project is successful. Is it successful once the scope of work is completed, or only if it’s completed on time and on budget? Or does success simply depend on getting sign-off from a satisfied stakeholder, even if the scope expanded well beyond the original commitment?

These questions are answered differently since everyone involved in a project is likely to have a personal perspective on what successful completion will look like; this is why there is a need to start a project plan by clearly defining a selection of success criteria that everyone agrees with.
Here are seven ways in which can be measured the success of a project. Depending on the type and purpose of the project, the manager determines which of these elements are most important to everyone involved and then defines the specific metrics that will be used within each selected criteria to measure the success of project.

Budget: In many cases, budget is the most important factor in defining both the scope and the success of a project. It often constrains scheduling as well, since delays can be costly. Questions to consider before basing your success metrics on the project budget include: How important is it that the project be completed on or under budget? Are additional resources available to fund project cost overruns, scope expansion or schedule delays? Has a margin of error or buffer amount been built into the budget calculation? Has a contingency budget been allocated to the project? Is there a clear process for increasing the budget if the client (or stakeholder) expands the scope or causes project delays? All these are logical questions that should be thought of.

Timing: There are a number of questions to consider about project scheduling before deciding whether timely completion should be one of your success metrics for the project, including: How important is the completion deadline? Is there any flexibility in the overall schedule or with respect to certain milestones? Are there any penalties or additional costs associated with scheduling delays? Do any other projects rely on this project being completed on time? If so, how critical are those related projects? Is completing the project on time a priority or are other aspects more important? All these are logical questions that should be thought of.

Scope: Here are some questions to think about before deciding whether one or more of your success metrics should be related to scope: Is completing everything within the agreed upon scope of work the most important part of the project? Does the scope (as defined) differentiate between “must do” elements and “do if possible” items? Do penalties apply if elements of the project are not completed? Is there slack in the schedule to accommodate change requests that expand the scope of the project?
Have you defined a change request process to ensure that budget and schedule are modified when the client (or stakeholder) asks to expand the scope? Do you have sufficient internal resources to deal with an expanded scope? All these are logical questions that should be thought of.

Quality: Project managers know that it’s impossible to do the highest quality work, for the lowest price, in the shortest amount of time. That’s why you have to think about which success measures are most important for each project. If you choose to define the success of your project in terms of quality of work, be sure to establish metrics that are attainable given the scope, schedule and budget of the project and their relative importance.

Stakeholder/Customer satisfaction: While it can be difficult to measure stakeholder satisfaction, doing so is critical to the success of your project. Whether your stakeholder is external (a customer who purchases products/services from your company) or internal (someone in another department in your organization for whom the project is being completed), measuring the success of your project on the basis of stakeholder satisfaction is good practice.

Unlike some other metrics, stakeholder satisfaction ratings are best measured throughout the project so that course corrections can be made when they fall short.

Project team satisfaction: Another way to measure the success of a project is based on team satisfaction. If keeping your team engaged in challenging and satisfying projects is a priority, you may choose to measure the success of a project on that basis by including one or more team satisfaction metrics when you measure project success.

Personal and professional development: One final way of measuring project success that is often overlooked is based on the contribution a project makes to the personal and professional development of the project manager and other members of the team.
When defining your project success metrics, consider the following: Does the project represent an opportunity for you or members of your project team to achieve one or more personal goals; such as increasing self-confidence or making new connections within the organization? Will the leadership skills you develop from running the project contribute to your professional development goals? Does the project offer opportunities for project team members to hone skills that will benefit them at work and in their careers? Will the project management experience you gain contribute to the attainment of a project management designation? All these are logical questions that should be thought of (Bourne, 2003).

2.1.8 Background of the Case

Muhanga District is located in the Southern Province of Rwanda approximately 45 km from the city of Kigali (the Rwandan capital city). The district has a population of 318,965 (Rwanda, 2012) and according to the household survey 2012, 53.4% of the population is under the poverty line with limited access to clean water and no access to reliable sources of energy for cooking and lighting. The district is made up of 12 administrative sectors, among which Nyabinoni Sector is located. Within this sector, one of the cells called Muvumba Cell has over time experienced environmental problems ranging from poor land management, saturation of River Nyabarongo that crosses a big portion of Rwanda. These problems are a result of steep slopes and constant soil erosion with flooding and landslides as major causes of disaster risks that destroy property and in the extreme, the lives of people.

There are 717 households in Muvumba Cell, in the proximity of NYABARONGO River banks who were living in difficult conditions such as unpredictable rainfall patterns and heavy rains causing floods and landslides, waterborne diseases due to unclean water, low agricultural productivity due to infertility of the soil and exposure to disaster risk events that lead to loss of lives and property.
With those problems of extreme and persistent cases of households that were vulnerable to climate and environmental challenges, it has increasingly become evident that the only option was to relocate the affected populations to a relatively more habitable location where a range of integrated development measures can enhance the resilience of these populations to climate change and related disaster risks.

Towards that end, the local administration structures at various levels ranging from community to District and Central government (MINALOC) along with REMA are in protecting Nyabarongo River banks have engaged in an integrated environmental management and climate resilience as well as livelihood and overall development interventions geared to finding a lasting solution to those challenges. One of the solutions includes relocating the population from Nyabinoni Sector to Muyebe Village in Rongi Sector. Even though there are 717 households in Muvumba Cell that needed to be relocated and benefit from ‘Muyebe II Integrated Environmental Management Project”, the district has only been able to acquire funding for the construction of 100 households that are most vulnerable.

That’s how “Muyebe II Integrated Environmental Management Project” idea has born with the objective of the project to improve livelihoods and Environment through land protection.

2.2 Empirical Literature

2.2.1 Design analysis of “Muyebe II Integrated Environmental Management Project”

Survey of 100 businesses across a broad cross section of industries on project management practices in New Zealand finds some truly startling results; It shows an incredible 70% of organizations have suffered at least one project failure in the prior 12 months; 50% of respondents also indicated that their project failed to consistently achieve what they set out to achieve as the design was not consistent with the real challenges on the field (Patton, 2007).
Analysis provides perspective. It provides evidence. It provides the types of information necessary for sound decision-making. Analysing the project design phase can be done in several ways due to the extent to which the designing phase of a project is vast and vary from project to project.

However any project design phase goes through an initial three-step process: First Project Idea, Second Project Concept and Third Appraisal. Therefore it can be made (Feuerstein, 1986).

A survey of 600 organizations globally in just a 12 month period shows that 49% of organizations had suffered a recent project failure. In the same period only 2% of organizations reported that all of their projects achieved the desired benefits, 86% of organizations reported a shortfall of at least 25% of targeted benefits across their portfolio of projects, many organizations fail to measure benefits so they are unaware of their true status in terms of benefits realization as a result of poor design (Milton, 2009).

It is known that researcher (Pocock, 2007) begun moving to new success measures (like participants’ satisfaction) and moving forward from the traditional model of measuring success.

According to (Abdullahi, 2011) an analysis of beneficiaries’ participation in project development stages revealed that participation of the beneficiaries took different forms at different stages of project development. The stages are problem identification, decision making and project evaluation. He found that participation by the beneficiaries was remarkable at problem identification (69.3%), while participation was low for project evaluation (40%) and decision making (26.7%).

Analysis may also be beneficial with ongoing quality improvement projects to help assess what actions may be needed to refine or improve the design of the project, or specific interventions within the project (Yin, 1989).

In relation and improving the literature the researcher has conducted the study to analyze the design of the selected case on the basis of selected variables.
2.2.2 Assessment of “Muyebe II Integrated Environmental Management Project” success

According to (Jeffrey, 1988), only 46% of organizations believe there is significant relation between their project designs and success. Yet, 68% of organizations indicate this relation is essential for project success. It is clear that there is significant room for improved relation the first step on the path to project success and better business outcomes.

A properly planned project addresses the real needs of its target groups. The existing situation must be interpreted in the light of the interests of the parties involved, who often see it in completely different ways. For this reason, the analysis of problems, objectives, and choice of strategy must be done together with the various stakeholders involved. As mentioned earlier, a successful project is the result not only of the accuracy of the technical solution, but also of the acceptance by all the parties involved of the need for the project and of the project’s approach to implementation.

(Gemunden, Salomon & Krieger, 2005) define project success along the dimension of triple constraints (time, budget, quality), the internal success dimension (technical success, competency gains, meeting target cost of new product) and external success dimension (financial success, meeting the market shares, image gain, and meeting the regulatory requirements of the new product.

An alternative approach to the analysis phase is to use the search conference approach. (Crombie, 1996) describes the search conference as a methodology of participatory planning that involves groups searching future possible environments for a more desirable future. The search conference process involves generating information and ideas through diverging techniques (brainstorming), synthesis and analysis of ideas and finally to planning future actions.

Survey of 1,500 management executives in the success / failure rates of projects finds; only 40% of projects met schedule, budget and quality goals, best organizations are 10 times more successful than worst organizations.
Biggest barriers to success listed as people factors: Changing mindsets and attitudes 58%, corporate culture 49%, lack of senior management support 32% and underestimation of complexity listed as a factor in 35% of projects (Margoulis & Salafsky, 2005).

Any useful definition of success criteria should account for variations in perspectives and dimensions:

Deliverables Success: Relating to the end-result of the project (products or services), including issues of quality and fulfilment of requirements.

Procedural Success: Relating to the way the project was organized; structured and managed, including timeliness, cost control, effectiveness of the project plan, and adherence to established project management standards.

Staff Success: Relating to the "human resource" elements of the project, including resource utilization, staff perspectives, interactions and team relationships.

These three categories set the stage for the definition of workable success criteria, but underlying specifics will probably vary according to the project at hand.

For that reason, success criteria should be created for each and every project encountered, and should be tailored to suit individual project circumstances. Above all, success criteria should be simple and attainable. And, once defined, they should also be ranked according to priority (Engwall & Jerbrant, 2003).

(Jiang, 2002) distinguishes between project success (measured against the overall objectives of the project) and project management success (measured against the widespread and traditional measures of performance against cost, time and quality).
The second distinction is also important – it is the difference between success criteria (the measures by which success or failure of a project or business will be judged) and success factors (those inputs to the management system that lead directly or indirectly to the success of the project or business).

(Adeyemi, 2009) conducted a study on the intervening variable and characteristics of farmers… he found that the total contribution of intervening variables varied between 50 and 70%, which clearly supports the research hypothesis, namely that their prediction and explanation value in terms of behaviour is much bigger than that of independent personal and environmental factor.

The researcher has selected a number of success criteria from the above reviewed to assess the success of “Muyebe II Integrated Environmental Management Project”.

2.2.3 Examination of “Muyebe II Integrated Environmental Management Project” design effects to its implementation success

Large projects have a poor track record. The vast majority of these projects overruns their initial timelines and never gets completed. A recent study assessed 10,640 projects from 200 companies in 30 countries and across several industries to find that only 2.5% of businesses successfully completed 100% of their projects scope set. Another study found the average cost overrun of all projects was 27%, with one in six projects experiencing a cost overrun of 200% on average and a schedule overrun of 70% (Waterman, 2001).

One of the most important, yet sometimes forgotten, tasks of the design phase is to examine the factors that can ensure project sustainability, and develop these throughout the life of the project.

If a subsequent phase of the project is not envisaged, an exit strategy is often needed, and the larger the project, the more important this will be.
According to (Dvir, 1997) in his developed universal multidimensional framework for the assessment of project success. Project success is seen as a strategic management concept where project efforts must be aligned with the strategic long-term goals of the same organization that the product of the project is intended to serve. The intent is to establish appropriate expectations of both the receiving management and the project team prior to project initiation.

Thus projects are not only unique undertakings but their range in objectives, size and complexity are almost limitless. To aid in sponsorship planning and decision-making, it would clearly be helpful if projects could be categorized into some meaningful and practical classification framework.

To this end, (Shenhar, 1996) conducted a series of studies over the period 1993-1998 based on a collection of more than 120 projects for which detailed management data was available. The author found that as project extent increases so does the need for increased project designs and that as complexity increases so does the need for higher and more formal project management.

An analysis of 5,400 large scale environmental projects (projects with initial budgets greater than $15M) finds that the well known project design problems are persisting. Among the key findings quoted from the report, 17% of large environmental projects go so badly that they can threaten the very existence of the institution; on average, large environmental projects run 45% over budget and 7% over time, while delivering 56% less value than predicted (Diamond, 2007).

(Shenar, Levy & Dvir, 2009) arrived to the conclusion that project success should be assessed along at least the four dimensions of project efficiency, impact on the customer, direct and business success, and preparing for the future.

An intervening variable explains how or why a relationship exists between the predictor and dependent variable, and a mediator is often an attribute or an intrinsic characteristic of individuals (Baron, 2001).
From the reviewed literature the researcher has conducted an examination of “Muyebe II Integrated Environmental Management Project” design effects to its implementation success by linking the dependent variables effects to their independent variables alterations.

2.3 Critical Review and Research Gap Identification

Many researchers Engwall and Jerbrant, Margoulis and Salafsky, Feuerstein, Shenhar, Dvir Ducat, Jeffrey and Waterman have not conducted post implementation studies that are essential for establishing the overall success, failures, challenges and lessons learned.

For those who do, it is usually within a month or two of completion of the project and usually focuses on how the project team did in performing the project implementation and move to other project without consulting the beneficiaries. However, for many projects, this may be insufficient time to get a clear picture of the project's business success or failure.

The ability to identify key attributes of project success is important to project owners, beneficiaries and donors.

The main objective of this research was to portray the relationship between project design and implementation success by receiving the feedback from all the stakeholders of the project including end users in order to enable more insightful conclusions about “Muyebe II Integrated Environmental Management Project”, and this was done in a necessary time after the project was implemented. It has been done through the analysis, assessment and examination of the selected elements of project design and their effects to the project success elements that were selected to conduct the study.

An extensive literature review was conducted in order to investigate the extent of the research done in the direction of this investigation and to find out the basic terminology used in the measuring the project success.
Data was collected through interview schedules and a questionnaire and analyzed in different ways in order to find the answers to the research questions.

2.4 Theoretical Framework

A theoretical framework is a conceptual model of how one theorizes or makes logical sense of the relationships among the several factors that have been identified as important to the problem.

According to (Lenin, 2002) the essence of causality is the production of an effect by a cause. Causality is the internal connection between that which already is and that which is generated by it. Accordingly, causality differs in principle from other forms of connections, which are characterized by some type of ordered correlation between two phenomena.

Causality is objective; it is an internal relationship inherent in things. It is universal, since there are no phenomena that do not have causes, just as there are no phenomena that do not produce some effect.

The connection between cause and effect is necessary: where a cause is accompanied by suitable conditions, an effect inevitably develops. Given the same conditions, the same effect is always generated by the same cause.

The effect produced by a particular cause becomes the cause of another phenomenon, which, in turn, becomes the cause of a third phenomenon, and so forth. This sequence of phenomena linked by the relationship of internal necessity is called a causal or cause-and-effect chain, or a chain of causality. All chains of causality have neither a beginning nor an end.

This study benefits the field of project management and has focused on the valuation of the relationship between the design and success of a project.
The study was conducted on the basis of a case of “Muyebe II Integrated Environmental Management Project”, in order to make a more accurate quantifiable study by analysing the relationship between the dependent and independent variables with the intervening variable and their causality.

Independent variables: budgeting, timing, scoping and project outcome while the dependent variables were deliverables success, procedural success and staff success including quality standard, timeliness, cost control and staff experience. The intervening variable was the government policy of environmental protection.

2.5 Conceptual Framework

According to Professor Roger Vaughan as cited on (Miles & Huberman , 1994) a conceptual literature is a written or visual presentation that: “explains either graphically, or in narrative form, the main things to be studied, the key factors, concepts or variables and the presumed relationship among them”.

Figure 2.1 is a visual presentation explaining graphically the main things that were studied, the variables and the known relationship among them. The researcher conceptualizes the study considering the independent and intervening variables effects to the dependent variables.
Figure 2.1: Conceptual framework of the study

Source: Author, 2015

Figure 2.1 is the illustration of the study the researcher has conducted. The independent variables budgeting, timing, scoping and projected outcome; the intervening variable is the government policy of environment protection; and the dependent variables of the study were measured through deliverables, procedurals and staff success those are quality standard, timeliness, cost control and staff experience.
2.6 Summary

This chapter has captured the theories and others’ work related to the study and has shown the theories and developed a conceptual framework of the study. It is real that there have been a number of valuable studies on the relationship between project design and success demonstrating the extent to which a well designed study lead to an implementation success. At the other hand showing that a badly designed project leads to an implementation failure and therefore to missed objectives.

However, none of these studies provided a specific picture of how consequent a well designed project facilitate the implementation and lead to successes such as deliverables, procedurals and staff; most particularly in Rwanda.

For this study the researcher has made a clear research on the relationship between project design and success by proving how a well budgeted, timed, scoped and project outcome determine a successful project implementation after consulting all stakeholders and on the basis of the selected elements of project design and their effects to their parallel project success variables that were selected to conduct this study as highlighted all along this chapter.
CHAPTER THREE: RESEARCH METHODOLOGY

3.0 Introduction

This chapter presents the methodology approach, the data collection techniques and the entire process that has been used to conduct the study. It shows the methods that the researcher has used to collect and analyse data, the selection of the respondents, and it will further show how the information has been obtained from respondents, analysed and interpreted to enable the researcher draw reasonable conclusions.

The methodology is the set of methods and principles that are used when studying a particular kind of work. A method composes all intellectual process an orderly system or arrangements that enable a researcher to reach an aspect of knowledge by using various techniques (Bailey, 1997).

3.1 Research Design

A research design typically includes how data is to be collected, what instruments will be employed, how the instruments will be used and the intended means for analysing data collected.

For this study the explanatory research has been conducted where the purpose was to identify any causal links between the factors or variables that pertained to the research problem. The researcher has conducted the research on the basis of a selected case study and both primary and secondary data were used. This has minimized the chance of drawing incorrect causal inferences from data. The researcher has gone through the lists of the target population which have been gotten from the appropriate authoritative level.
Then selected a number of representatives of the population following an appropriate formula, that sample was interviewed, together with the extracts from the documents that were reviewed the researcher used Microsoft word and excel to make a better compiled and understandable form of result, in order to make a more accurate and viable conclusions and recommendations at the end of the study.

3.2 Target Population

The target population is the entire group a researcher is interested in; the group about which the researcher wishes to draw conclusions.

There are 717 households in Muvumba Cell, in the proximity of Nyabarongo River banks who were living in difficult conditions such as unpredictable rainfall patterns and heavy rains causing floods and landslides, waterborne diseases due to unclean water, low agricultural productivity due to infertility of the soil and exposure to disaster risk events that lead to loss of lives and property. A part from those respondents there were six other respondents according to the design of “Muyeb II Integrated Environmental Management Project” those were key personnel involved in the project, such as the project executive, project manager, and core technical staffs.

Table 3.1: Target population of the study

<table>
<thead>
<tr>
<th>MIIP Stakeholders</th>
<th>Number of Stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beneficiaries</td>
<td>717</td>
</tr>
<tr>
<td>Project Staff</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>723</td>
</tr>
</tbody>
</table>

Source: Muhanga, 2009
3.3 Sample Design

3.3.1 Sample Size

Determining sample size is a very important issue because samples that are too large may waste time, resources and money, while samples that are too small may lead to inaccurate results. In many cases, we can easily determine the minimum sample size needed to estimate a process parameter.

The right sample size for a particular application depends on many factors, including the following: cost considerations (e.g., maximum budget, desire to minimize cost); administrative concerns (e.g., complexity of the design, research deadlines); minimum acceptable level of precision; confidence level; variability within the population or subpopulation (e.g., stratum, cluster) of interest and sampling method. (Cozby, 2001)

If a sample is taken from a population, a formula must be used to take into account confidence levels and margins of error. When taking statistical samples, sometimes a lot is known about a population, sometimes a little and sometimes nothing at all.

Slovin's formula is used when nothing about the behaviour of a population is known at all.

To use the formula, first you figure out what you want your error of tolerance to be. For example, you may be happy with a confidence level of 95% (giving a margin error of 0.05), or you may require a slacker accuracy of a 90% confidence level (a margin of error of 0.1). Plug your population size and required margin of error into the formula. The result will be the number of samples you need to take.

Slovin's formula is written as:

\[n = \frac{N}{1 + (N \times e^2)} \]
\(n = \text{Number of samples} \)

\(N = \text{Total population} \)

\(e = \text{Error tolerance} \)

For this study, \(N = 717 \) and the confidence level of 90% will be used which is associated with margin error of 0.1

We can now calculate the sample size based on the theory with \(n \) the sample size we need

\[
 n = \frac{N}{1 + (N \times e^2)}
\]

\[
 n = \frac{717}{1 + (717 \times 0.1^2)}
\]

\(n = 87 \)

Apart from 87 beneficiaries of the project there are 6 more respondents who were included on the sample those are the project staff. The project has got 6 staff members and all responded to the study as they were of a number which doesn’t require methods of sampling. This has made the whole sample of the study to be 93.

\[
 n = 87 + 6
\]

\(n = 93 \)

3.3.2 Sampling Technique

Systematic random sampling is a method of probability sampling in which the defined target population is ordered and the sample is selected according to position using a skip interval.
The researcher has gone through the alphabetically ordered lists of 717 beneficiaries and selected systematically 87 respondents by selecting each first, third, fifth and seventh ranked beneficiary in each letter. For the project staff there was no sampling technique used as the whole project staff were involved as respondents.

3.4 Data Collection Technique

3.4.1 Data Collection Instruments

Data collection instruments were different as primary data was collected by using structured interviews, sometimes known as interview schedules, referring to those questionnaires where interviewers physically meet respondents and ask the schedule question face to face. The researcher has chosen this technique of data collection to be used due to the fact that the target population is not mainly educated, meaning that they cannot respond to the written questions.

As secondary data the researcher has again used the documentation technique to review and extract data from previous researches and other documents in relation to the study especially from the documents kept by government officials as well as from the written literature by different authors.

The researcher has also use observation technique to collect data where he has gone on the field and observed what have been achieved.

3.4.2 Administration of Data Collection Instruments

The administration of questionnaires was preceded by a visit of the study zone that has assisted in refining timings of their presentation. It has also provided a rough picture of the respondent’s expectations. The researcher has got that time to agree with the respondents when the research instruments were to be administered. Adequate time has been given to the respondents to respond to the questions.
The questionnaires were collected after one week to ensure that answering of questionnaires was allocated enough time for the respondents to give full information for the six personnel of the project.

3.4.3 Reliability and Validity

3.4.3.1 Reliability

Reliability is the degree to which an assessment tool produces stable and consistent results.

For this study to be reliable the researcher used a Test-retest reliability which is a measure of reliability obtained by administering the same test twice over a period of time to a group of individuals. The scores from time 1 and time 2 will then be correlated in order to evaluate the test for stability over time. The second administration came 10 days after the first.

3.4.3.2 Validity

Validity refers to how well a test measures what it is purported to measure. While reliability is necessary, it alone is not sufficient. For a test to be reliable, it also needs to be valid.

For this study to be valid the researcher conformed to a validity aspect Face Validity which ascertains that the measure appears to be assessing the intended construct under study, in other words, a test can be said to have face validity if it looks like it is going to measure what is supposed to measure. The stakeholders will easily assess face validity. Although this is not a very scientific type of validity, it was an essential component in volunteering motivation of stakeholders. If the stakeholders did not believe the measure was an accurate assessment of the theme, they could have disengaged with the task.

3.5 Data Analysis Procedure

By analytical and logical reasoning to study each component of the data provided the researcher matches the findings to the research objectives in order to meet them.
After data is collected from field it was grouped according to similarities in order to give it more sense, then these groups were put in tables to make them more meaningful to the researcher for an easy quantifiable and summarized form.

From there the analysis was done through a detailed study of the elements of the independent variables influences and their effects to the dependent variables. The researcher has made analysis through descriptive and correlational statistics where the mean (µ) which gives a good idea about interpreting the statistical data.

\[\mu = \frac{\sum x}{n} \]

Product moment coefficient of correlation (r) was calculated to show the link between variables. This provides a measure of the strength of association between two variables; one of the independent variable. R can range from +1, i.e. perfect positive correlation where the variables change value in the same directions as each other, to -1 i.e. perfect negative correlation where y decreases linearly as x increases.

\[r = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \times \sqrt{n \sum y^2 - (\sum y)^2}} \]

The data was coded to allow the researcher to reduce large quantities of information into a form that can be more easily handled, especially by computer programs. The researcher used Microsoft Word and Excel to make a suitable arrangement and compilation in form of tables and figures.

3.6 Ethical Consideration

Prior carrying out the study the researcher had a research authorization. A study certificate from the school signed by the dean was attached to the questionnaire introducing the author as a student of Mount Kenya University.
A cover agreement between the researcher and the authority of Muhanga District was attached to assure the respondents of anonymity of the data they have provided.

All those permissions to carry out the study were sought by respondents who have been demanded to answer the questions of the study. The researcher has explained the nature and rationale of the study to the respondents.

The researcher has also respected the respondents’ individual rights and safeguarded their personal integrity. For maintenance of both confidentiality and anonymity of respondents, no name was mentioned on the questionnaire but each questionnaire was marked with a code for reference. Respondents were free to withdraw from the study at any point or time.
CHAPTER FOUR: RESEARCH FINDINGS AND DISCUSSION

4.0 Introduction

In this chapter the researcher presents, analyses and discusses the research findings from the interview schedules and documents reviewed of this study as described in the section of research design.

The results are divided into two sections. The first section deals with demographic information of the respondents by looking at gender and age of respondents. The second section deals with the analysis and discussion of data from the interview schedules and documents reviewed on the relation to the study.

4.1 Demographic Characteristics of Respondents

In this section, the demographic information of the respondents is presented and analysed in order to show the distribution of the respondents by their gender and age. This information is important to the study because it helps the reader to understand some pertinent issues that may have a bearing on the analysis. The data will be presented in both tabular and figures form.

Muvumba Cell has 717 households which was a part of this study’s target population; another part of the target population is 6 personnel of the project, making the whole 723 as shown in Table 3.1. Table 4.1 shows the sample size and responses obtained from the filed survey.

<table>
<thead>
<tr>
<th>Table 4.1: Responses Obtained From Field Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Population</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Beneficiaries</td>
</tr>
<tr>
<td>Staff</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Source: Field Survey 2015
Table 4.1 shows the sample size of the target population selected to conduct the study and the responses obtained from the field survey after data instruments were administered. 93 (100%) of the interviewees have responded to the questions.

4.1.1 Gender of Respondents

Figure 4.1 displays primary data compiled from the demographic questions of the interview schedules. It shows the demographic information about the respondents’ gender.

Figure 4.1: Respondents Gender Ration

![Gender Ratio Chart]

Source: Field Survey 2015

There have been 93 respondents of MIIP beneficiaries and staffs; Figure 4.1 indicates that 49% were females while males were 51%, making women 46 and male 47. The fact that there was almost an equal distribution in the sample for men and women is not by design; and these gender balances indicate that there is almost equal female and male ratio in Rwandan population in general. It is a sign that the findings were equilibrated as they were conferred by balanced gender respondents.
4.1.2 Age

There have been different age distribution intervals of respondents; Table 4.2 illustrates respondents’ frequencies in different age intervals.

Table 4.2: Respondents Age Distribution

<table>
<thead>
<tr>
<th>Age intervals</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20</td>
<td>1</td>
<td>1.08</td>
</tr>
<tr>
<td>20-40</td>
<td>31</td>
<td>33.33</td>
</tr>
<tr>
<td>41-60</td>
<td>55</td>
<td>59.14</td>
</tr>
<tr>
<td>>60</td>
<td>6</td>
<td>6.45</td>
</tr>
<tr>
<td>Total</td>
<td>93</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Field Survey 2015

Table 4.2 indicates that the majority of respondents are in within the age interval 41 – 60 with on its own 59.14%, the interval 20 – 40 hold 33.33% of respondents while under 20 and above 60 hold 1.08% and 6.45% respectively. This makes the findings truthful as the ratio of teenagers who my not be serious while responding to the interviews in the sample is low.

4.2 Presentation of Findings

4.2.1 Analysing “Muyebe II Integrated Environmental Management Project” Design

In line with the objective number 1, this point has compiled data from findings putting them into tables and figures as mentioned in section 3.5.

From interview schedules findings, the researcher has compiled data in Table 4.3 showing respondents analysis of MIIP budget.
The illustrated scenario in Table 4.3 calls for analysis as stated in section 2.2.1 (Diamond, 2007) assert “…17% of large environmental projects go so badly that they can threaten the very existence of the institution; on average, large environmental projects run 45% over budget”. It is therefore worth for the researcher to conduct this study to analyze MIIP cost control.

To this end, Table 4.3 shows the budget level intervals established for respondents to qualify the MIIP budget in its left column, the central column shows the frequency of responders in each interval of left column and the third column the calculated percentage of the sample.

The majority of respondents (79.57%) qualified MIIP budget to be in the interval 61 – 80 while 17.20% qualified it in 81 – 100 and 3.23% in within 41 - 60. The mean response was 79.79%, lying in the interval 61 – 80.

From interview schedules findings, the researcher has portrayed data in Figure 4.2 showing respondents implementation participation in MIIP.
Figure 4.2: Respondents Implementation Participation in MIIP

The illustrated scenario in Figure 4.2 calls for analysis as stated in section 2.2.1 (Abdullahi, 2011) assert “….He found that participation by the beneficiaries was remarkable at problem identification (69.3%), while participation was low for project evaluation (40%) and decision making (26.7%). Therefore the researcher conducted the study to close the gap on the analysis of beneficiaries participation on project implementation.

To this end, Figure 4.2 portrays the part in percentage of respondents that were involved in the implementation of MIIP.

The area shaded in green with font yes represents 39% of respondents that have participated in the implementation of MIIP, among them 6 personnel of the project. The remaining 61% has not participated in the implementation, making beneficiaries participation at 32.18%.

From interview schedules findings, the researcher has compiled data in Table 4.4 showing respondents remuneration satisfaction analysis for those who participated in the implementation stage.

Source: Field Survey 2015
Table 4.4: Respondents Remuneration Satisfaction Analysis

<table>
<thead>
<tr>
<th>Remuneration Satisfaction</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 40</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>41 - 60</td>
<td>3</td>
<td>8.82</td>
</tr>
<tr>
<td>61 - 80</td>
<td>25</td>
<td>73.53</td>
</tr>
<tr>
<td>81 - 100</td>
<td>6</td>
<td>17.65</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Field Survey 2015

The illustrated scenario in Table 4.4 calls for analysis as stated in section 2.2.1 (Pocock, 2007) assert “…begun moving to new success measures (like participants’ satisfaction) and moving forward from the traditional model of measuring success”. To conform to this statement the researcher conducted this study by incorporating a new variable that is remuneration satisfaction.

To this end, Table 4.4 shows the remuneration satisfaction level intervals established for responders to qualify the MIIP wages in its left column, the central column shows the frequency of responders in each interval of left column and the third column the calculated percentage of the sample.

The majority of respondents (73.53%) qualified MIIP wages to be in the interval 61 – 80 while 8.82% qualified it in 41 – 60 and 0% in within interval 20 – 40 and 17.65 in 81 - 100. The mean response was 71.76%, lying in the interval 61 – 80.

From interview schedules findings, the researcher has portrayed data in Figure 4.8 showing the respondents MIIP post implementation effects examination.
Figure 4.3: Respondents MIIP Post Implementation Effects Analysis

![Bar Chart](chart.png)

Source: Field Survey 2015

The illustrated scenario in Figure 4.3 calls for analysis because as stated in section 2.2.1 where (Milton, 2009) assert “… a survey of 600 organizations globally in just a 12 month period shows that 49% of organizations had suffered a recent project failure.

In the same period only 2% of organizations reported that all of their projects achieved the desired benefits, 86% of organizations reported a shortfall of at least 25% of targeted benefits across their portfolio of projects, many organizations fail to measure benefits so they are unaware of their true status in terms of benefits realization as a result of poor design”. The researcher needed to investigate on this aspect.

To this end, Figure 4.3 portrays the green shaded bars in percentage of the respondents MIIP post implementation effects analysis levels low, medium and high established for respondents. The majority (88.17%) of respondents answered the MIIP post implementation effects to be high while 8.60% of respondents responded it to be medium and 3.23% responded it to be low. The mean response was 86.98%, ranking MIIP highly effective in post implementation period.
4.2.2 Assessment of “Muyebe II Integrated Environmental Management Project” Success

In line with the objective number 2, this point has compiled data from findings putting them into tables and figures as mentioned in section 3.5.

From interview schedules findings, the researcher has compiled data in Table 4.6 showing respondents scope assessment of MIIP.

Table 4.5: Respondents Scope Assessment of MIIP

<table>
<thead>
<tr>
<th>Scope Assessment Level</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 40</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>41 - 60</td>
<td>6</td>
<td>6.45</td>
</tr>
<tr>
<td>61 - 80</td>
<td>13</td>
<td>13.98</td>
</tr>
<tr>
<td>81 - 100</td>
<td>74</td>
<td>79.57</td>
</tr>
<tr>
<td>Total</td>
<td>93</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Field Survey 2015

The illustrated scenario in Table 4.6 calls for assessment in reference to statement in section 2.2.2 where (Waterman, 2001) assert “… a study assessed 10,640 projects from 200 companies in 30 countries and across several industries to find that only 2.5% of businesses successfully completed 100% of their projects scope set”. In reference to these findings the researcher conducted the study to assess scope coverage by MIIP.

To this end, Table 4.6 shows the scope assessment level intervals established for respondents to qualify the MIIP scope coverage in its left column, the central column shows the frequency of responders in each interval of left column and the third column the calculated percentage of the sample. The majority of respondents (79.57%) qualified MIIP scope coverage to be in the interval 81 – 100 while 13.98% qualified it in 61 – 80, 0% in within interval 20 – 40 and 6.45% in 41 - 60. The mean response was 84.63%, lying in the interval 81 – 100.
From interview schedules findings, the researcher has compiled data in Table 4.7 showing respondents quality standard assessment.

Table 4.6: Respondents Quality Standard Assessment

<table>
<thead>
<tr>
<th>Quality Standard</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 40</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>41 - 60</td>
<td>7</td>
<td>7.53</td>
</tr>
<tr>
<td>61 - 80</td>
<td>11</td>
<td>11.83</td>
</tr>
<tr>
<td>81 - 100</td>
<td>75</td>
<td>80.65</td>
</tr>
<tr>
<td>Total</td>
<td>93</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Field Survey 2015

The illustrated scenario in Table 4.7 calls for assessment in reference to a statement in section 2.2.2 where (Margoulis & Salafsky, 2005) assert “… a survey of 1,500 management executives in the success / failure rates of projects finds; only 40% of projects met schedule, budget and quality goals, best organizations are 10 times more successful than worst organizations”. Viewing these findings the researcher conducted the study by adding a scope assessment as a variable to better the research.

To this end, Table 4.7 shows the quality standard assessment level intervals established for responders to qualify the MIIP outcome quality standard in its left column, the central column shows the frequency of responders in each interval of left column and the third column the calculated percentage of the sample. The majority of respondents (80.65%) qualified MIIP outcome quality standard to be in the interval 81 – 100 while 11.83% qualified it in 61 – 80, 0% in within interval 20 – 40 and 7.53% in 41 - 60. The mean response was 84.62%, lying in the interval 81 – 100.

From interview schedules findings, the researcher has portrayed data in Figure 4.4 showing the assessment of project staff experience gained in MIIP taking into account different skills including cost control, scoping, outcome control and timeliness skills.
Figure 4.4: Project Staff Experience Gained in MIIP

Source: Field Survey 2015

The illustrated scenario in Figure 4.4 calls for assessment in reference to a statement in section 2.2.2 where (Gemunden, Salomon & Krieger, 2005) assert “… define project success along the dimension of triple constraints (time, budget, quality)…”, but they have not mentioned project staff experience as success criteria in project implementation.

The researcher to close that gap Figure 4.4 portrays the green shaded bars in percentage of project staff responses on the experience gained in MIIP four selected elements of project design including cost control, outcome control, scoping and timeliness skills. A 100% project staff responded to have gained cost control, outcome control and timeliness skills while 83.33% responded to have gained scoping skills in the implementation of MIIP.

From interview schedules findings, the researcher has portrayed data in Figure 4.5 showing the respondents MIIP performance assessment.
The illustrated scenario in Figure 4.5 calls for assessment because as stated in section 2.2.2 where (Jeffrey, 1988) assert “… only 46% of organizations believe there is significant relation between their project designs and success. Yet, 68% of organizations indicate this relation is essential for project success. It is clear that there is significant room for improved relation the first step on the path to project success and better business outcomes”. The researcher needed to investigate on this.

To this end, Figure 4.5 portrays the green shaded bars in percentage of respondents MIIP performance examination levels low, medium and high established for responders. The majority (89.25%) of respondents answered the MIIP performance to be high while 9.68% of respondents responded it to be medium and 1.08% responded it to be low. The mean response was 87.63%, making MIIP highly performing.

From interview schedules findings, the researcher has portrayed data in Figure 4.6 showing the project staff timeliness success assessment of MIIP.
The illustrated scenario in Figure 4.6 calls for assessment in reference to a statement in section 2.2.2 where (Waterman, 2001) assert “… a study assessed 10,640 projects from 200 companies in 30 countries and across several industries to find that only 2.5% of businesses successfully completed 100% of their projects scope set”. The researcher needed to assess the timelines.

To this end, Figure 4.6 portrays the green shaded bars in percentage of project staff responses on the qualification of MIIP timeliness in intervals established for respondents.

The majority (83.33%) of responders answered the timeliness to be a success for MIIP in the interval of 81 – 100 while 16.67% of responders in 61 – 80% and 0% in the intervals 20 – 40 and 41 – 60. The mean response was 86.66%, lying in the interval 81 – 100.

From interview schedules findings, the researcher has portrayed data in Figure 4.7 showing the project staff experience gained success assessment of MIIP.
4.2.3 Examination “Muyebe II Integrated Environmental Management Project” Design

Effects to its Implementation Success

In line with the objective number 3, this point has compiled data from findings putting them into figures and tables as mentioned in section 3.5.

From interview schedules findings, the researcher has compiled data in Table 4.7 showing respondents time allocation examination of MIIP.

<table>
<thead>
<tr>
<th>Necessary Time Allocated</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - 40</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>41 - 60</td>
<td>2</td>
<td>2.15</td>
</tr>
<tr>
<td>61 - 80</td>
<td>63</td>
<td>67.74</td>
</tr>
<tr>
<td>81 - 100</td>
<td>28</td>
<td>30.11</td>
</tr>
<tr>
<td>Total</td>
<td>93</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Field Survey 2015

The illustrated scenario in Table 4.7 calls for examination as stated in section 2.2.3 (Diamond, 2007) assert “…17% of large environmental projects go so badly that they can threaten the very existence of the institution; on average, large environmental projects run 7% over time”. To investigate on this the researcher needed to conduct this study to analyze MIIP timeliness.

To this end, Table 4.7 shows the necessary time allocation level intervals established for respondents to qualify the MIIP timeliness in its left column, the central column shows the frequency of responders in each interval of left column and the third column the calculated percentage of the sample.
The majority of respondents (67.74%) qualified MIIP time allocation to be in the interval 61 – 80 while 30.11% qualified it in 81 – 100, 0% in within interval 20 – 40 and 2.15% in 41 - 60. The mean response was 75.59%, lying in the interval 61 – 80. The calculated r is:

\[
r = \frac{93(5115) - (93 \times 100)}{\sqrt{93(4757) - 8649 \times \sqrt{93(5499.94) - 10000.1}}} = 0.93
\]

As stated in section 3.5 with r equal to 0.93, MIIP timing was perfectly positively correlated to its timeliness.

From interview schedules findings, the researcher has portrayed data in Figure 4.7 showing the respondents MIIP cost control examination.

Figure 4.7: Respondents Cost Control Examination of MIIP

Source: Field Survey 2015

The illustrated scenario in Figure 4.7 calls for examination in reference to a statement in section 2.2.3 where (Waterman, 2001) assert “… a study found the average cost overrun of all projects was 27%, with one in six projects experiencing a cost overrun of 200% on average and a schedule overrun of 70%”. The researcher conducted the study to examine cost control of project staff in MIIP.
To this end, Figure 4.7 portrays the green shaded bars in percentage of project staff responses on the qualification of MIIP cost control in intervals established for responders. The total (100%) of responders answered the cost control to be a success for MIIP in the interval of 81 – 100 as there were no budget overrun during the implementation period and all activities were done as projected.

From interview schedules findings, the researcher has portrayed data in Figure 4.8 showing the respondents MIIP floods solving examination.

Figure 4.8: Respondents MIIP Floods Solving Examination

![Bar Chart]

Source: Field Survey 2015

The illustrated scenario in Figure 4.8 calls for examination as stated in section 2.2.3 where (Shenar, Levy & Dvir, 2009) assert “… arrived to the conclusion that project success should be assessed along at least the four dimensions of project efficiency, impact on the customer, direct and business success, and preparing for the future”. The researcher needed to investigate on this issue.
To this end, Figure 4.8 portrays the green shaded bars in percentage of sample responses on the qualification of MIIP floods solving in intervals established for responders. The entire sample (100%) of responders answered the floods by MIIP to be in the interval of 81 – 100 as there were no floods observed from the implementation of MIIP.

From interview schedules findings, the researcher has portrayed data in Figure 4.9 showing the respondents MIIP landslides solving examination.

Figure 4.9: Respondents MIIP Landslides Solving Examination

![MIIP Landslides Solving Graph]

Source: Field Survey 2015

The illustrated scenario in Figure 4.9 calls for examination as stated in section 2.2.3 where (Shenar, Levy & Dvir, 2009) assert “… arrived to the conclusion that project success should be assessed along at least the four dimensions of project efficiency, impact on the customer, direct and business success, and preparing for the future”. The researcher needed to investigate on this issue.

To this end, Figure 4.9 portrays the green shaded bars in percentage of sample responses on the qualification of MIIP landslides solving in intervals established for respondents.
The majority (84.95%) of respondents answered the landslides to be solved by MIIP in the interval of 81 – 100 while 9.68% of responders in 61 – 80%, 4.30% in the interval 41 – 60 and 1.08% in 20 – 40.

The mean response was 85.69%, lying in the interval 81 – 100. The calculated \(r \) is:

\[
r = \frac{93(8398.3) - (100.01 \times 220)}{\sqrt{93(7329.86) - 10002 \times \sqrt{93(14200)} - 48400}} = 0.82
\]

As stated in section 3.5 with \(r \) equal to 0.82, MIIP outcome was perfectly positively correlated to its quality delivery as landslides were considerably reduced.

From interview schedules findings, the researcher has portrayed data in Figure 4.10 showing the respondents MIIP low productivity solving examination.

Figure 4.10: Respondents MIIP Low Productivity Solving Examination

![MIIP Low Productivity Solving Chart]

Source: Field Survey 2015
The illustrated scenario in Figure 4.10 calls for examination as stated in section 2.2.3 where (Shenar, Levy & Dvir, 2009) assert “… arrived to the conclusion that project success should be assessed along at least the four dimensions of project efficiency, impact on the customer, direct and business success, and preparing for the future”. The researcher needed to investigate on this issue.

To this end, Figure 4.10 portrays the green shaded bars in percentage of sample responses on the qualification of MIIP low productivity solving in intervals established for respondents.

The majority (59.14%) of respondents answered the low productivity to be solved by MIIP in the interval of 81 – 100 while 20.43% of responders in 61 – 80%, 13.98% in the interval 41 – 60 and 6.45% in 20 – 40. The mean response was 76.45%, lying in the interval 61 – 80. The calculated r is:

\[
 r = \frac{93(7107.6) - (100 \times 220)}{\sqrt{93(4151.96) - 10000 \times \sqrt{93(14200) - 48400}}} = 0.92
\]

As stated in section 3.5 with r equal to 0.92, MIIP outcome was perfectly positively correlated to its quality delivery.

From interview schedules findings, the researcher has portrayed data in Figure 4.11 showing the respondents MIIP erosion solving examination.
The illustrated scenario in Figure 4.11 calls for examination as stated in section 2.2.3 where (Shenar, Levy & Dvir, 2009) assert “… arrived to the conclusion that project success should be assessed along at least the four dimensions of project efficiency, impact on the customer, direct and business success, and preparing for the future”. The researcher needed to investigate on this issue.

To this end, Figure 4.11 portrays the green shaded bars in percentage of sample responses on the qualification of MIIP erosion solving in intervals established for respondents.

The majority (70.97%) of respondents answered the erosion to be solved by MIIP in the interval of 81 – 100 while 16.13% of responders in 61 – 80%, 10.75% in the interval 41 – 60 and 2.15% in 20 – 40. The mean response was 81.18%, lying in the interval 81 – 100. The calculated r is:

$$r = \frac{93(7785.1) - (100 \times 220)}{\sqrt{93(5417.1) - 10000 \times \sqrt{93(14200) - 48400}}} = 0.88$$
As stated in section 3.5 with r equal to 0.88, MIIP outcome was perfectly positively correlated to its quality delivery.

From interview schedules findings, the researcher has portrayed data in Figure 4.12 showing the respondents environmental protection policy role examination in MIIP.

Figure 4.12: Respondents Environmental Protection Role Examination in MIIP

![Environmental Protection Policy Role](image)

Source: Field Survey 2015

The illustrated scenario in Figure 4.12 calls for examination because as stated in section 2.2.3 where (Baron, 2001) assert “… an intervening variable explains how or why a relationship exists between the predictor and dependent variable, and a mediator is often an attribute or an intrinsic characteristic of individuals”. Based on this statement the researcher needed to investigate on this.

To this end, Figure 4.12 portrays the green shaded bars in percentage of sample responses on the qualification of MIIP government policy role in intervals established for respondents.

The majority (65.59%) of respondents answered the government policy role in MIIP implementation to be medium while 30.11% of responders responded it to be high and the remaining 4.30% responded it
to be low. The mean response was 75.16%, ranking environmental protection role highly affecting MIIP implementation. The calculated r is:

$$r = \frac{93(6817.3) - (100 \times 190)}{\sqrt{93(5227.15) - 10000 \times \sqrt{93(13300) - 36100}}} = 0.81$$

As stated in section 3.5 with r equal to 0.81, the intervening variable was perfectly positively correlated to the implementation success of MIIP.

4.3 Summary

In this chapter, data analysis, discussion of the findings and interpretation has been presented. Findings from this study have been found to be consistent with the findings of several related studies on project design and implementation success. In addition the effect of various findings on project design and implementation success has been presented.

Data findings were presented as tabulations and figures and it has been found that there are correlations between variables on the study conducted.

CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
5.0 Introduction

In this chapter, the summary of findings was presented. The findings from both field survey and literature review were presented and linked. The conclusions drawn from this study were presented in this chapter in line with the objectives of the study. At the end the recommendations and suggestions for further studies were given.

5.1 Summary of Findings

There have been 93 respondents of MIIP beneficiaries and staffs; where 49% were females while males were 51%, making women 46 and male 47. Among 93 respondents there were 6 respondents on the side of project staff, the remaining were beneficiaries of the project.

About the respondents ages the majority of respondents were in within the age interval 41 – 60 with on its own 59.14%, the interval 20 – 40 held 33.33% of respondents while under 20 and above 60 held 1.08% and 6.45% respectively. The summary of findings in line with each objective of the study is presented in the next sections.

5.1.1 To Analyse “Muyebe II Integrated Environmental Management Project” Design

In this section, summary of findings from sample responses are presented in line with the objective number one of the study.

In terms of budget analysis the majority of respondents (79.57%) qualified MIIP budget to be in the interval 61 – 80 while 17.20% qualified it in 81 – 100 and 3.23% in within 41 - 60. The mean response was 79.79%, lying in the interval 61 – 80.
In terms of respondents on implementation participation; 39% of respondents confirmed their participation in the implementation of MIIP, among them 6 personnel of the project. The remaining 61% has not participated in the implementation, making beneficiaries participation at 32.18%.

In terms of respondents satisfaction by the remuneration for those who were employed in the implementation of the project the majority of respondents (73.53%) qualified MIIP wages to be in the interval 61 – 80 while 8.82% qualified it in 41 – 60 and 0% in within interval 20 – 40 and 17.65 in 81 - 100. The calculated mean response from respondents on the remuneration satisfaction was 71.76%, lying in the interval 61 – 80.

In terms of respondents post implementation effects analysis the majority (88.17%) of respondents answered the MIIP post implementation effects to be high while 8.60% of respondents responded it to be medium and 3.23% responded it to be low. The calculated mean response was 86.98%, ranking MIIP highly effective in post implementation period.

5.1.2 To Assess “Muyebe II Integrated Environmental Management Project” Success

In this section, summary of findings from respondents’ views are presented in line with the objective number two of the study.

In terms of scope assessment by respondents the majority of respondents (79.57%) qualified MIIP scope coverage to be in the interval 81 – 100 while 13.98% qualified it in 61 – 80, 0% in within interval 20 – 40 and 6.45% in 41 - 60. The calculated mean response was 84.63%, lying in the interval 81 – 100.
In terms of respondents quality standard assessment the majority of respondents (80.65%) qualified MIIP outcome quality standard to be in the interval 81 – 100 while 11.83% qualified it in 61 – 80, 0% in within interval 20 – 40 and 7.53% in 41 - 60. The calculated mean response was 84.62%, lying in the interval 81 – 100.

In terms of project staff experience gain 6 (100%) project staff responded to have gained cost control, outcome control and timeliness skills while 5 (83.33%) responded to have gained scoping skills in the implementation of MIIP. The calculated mean response was 80.90%.

In terms of MIIP performance the majority (89.25%) of respondents answered the MIIP performance to be high while 9.68% of respondents responded it to be medium and 1.08% responded it to be low. The calculated mean response was 87.63%, showing that the overall performance of the project was high.

In terms of project staff timeliness assessment 5 (83.33%) of responders answered the timeliness to be a success for MIIP in the interval of 81 – 100 while 1 (16.67%) of responders in 61 – 80. The calculated mean response was 86.66%, lying in the interval 81 – 100.

5.1.3 To Examine the Effects of “Muyebe II Integrated Environmental Management Project” Design to its Implementation Success

In this section, summary of findings from beneficiaries’ responses are presented in line with the objective number three of the study.

In terms of respondents time allocation examination the majority of respondents (67.74%) qualified MIIP time allocation to be in the interval 61 – 80 while 30.11% qualified it in 81 – 100, 0% in within interval 20 – 40 and 2.15% in 41 - 60.
The calculated mean response was 75.59%, lying in the interval 61 – 80. As stated in section 3.5 with calculated r equal to 0.93, MIIP timing was perfectly positively correlated to its timeliness.

In terms of respondents cost control examination the total (100%) of respondents composed by the project staff answered the cost control to be a success for MIIP in the interval of 81 – 100 as there was no budget overrun during the implementation period and all activities were done as projected.

In terms of respondents MIIP floods solving examination the entire sample (100%) of respondents answered the floods solve by MIIP to be in the interval of 81 – 100 as there were no floods observed from the implementation of MIIP.

In terms of respondents MIIP landslides solving examination the majority (84.95%) of respondents answered the landslides to be solved by MIIP in the interval of 81 – 100 while 9.68% of respondents in 61 – 80%, 4.30% in the interval 41 – 60 and 1.08% in 20 – 40. The calculated mean response was 85.69%, lying in the interval 81 – 100. As stated in section 3.5 with calculated r equal to 0.82, MIIP outcome was perfectly positively correlated to its quality delivery as landslides were considerably reduced.

In terms of respondents MIIP low productivity solving examination the majority (59.14%) of respondents answered the low productivity to be solved by MIIP in the interval of 81 – 100 while 20.43% of respondents in 61 – 80%, 13.98% in the interval 41 – 60 and 6.45% in 20 – 40. The mean response was 76.45%, lying in the interval 61 – 80. As stated in section 3.5 with calculated r equal to 0.92, MIIP outcome was perfectly positively correlated to its quality delivery.

In terms of respondents MIIP erosion solving examination the majority (70.97%) of respondents answered the erosion to be solved by MIIP in the interval of 81 – 100 while 16.13% of responders in 61 – 80%, 10.75% in the interval 41 – 60 and 2.15% in 20 – 40.
The mean response was 81.18%, lying in the interval 81 – 100. As stated in section 3.5 with calculated r equal to 0.88, MIIP outcome was perfectly positively correlated to its quality delivery.

In terms of respondents intervening variable role examination the majority (65.59%) of respondents answered the government policy role in MIIP implementation to be medium while 30.11% of respondents responded it to be high and the remaining 4.30% responded it to be low. The calculated mean response was 75.16%, ranking environmental protection role highly affecting MIIP implementation. As stated in section 3.5 with calculated r equal to 0.81, the intervening variable was perfectly positively correlated to the implementation success of MIIP.

5.2 Conclusions

The objectives of this study have been met as they have been outlined. The objectives of this study have been identified and related to the project design and implementation success in Rwanda on the basis of a case study selected.

In chapter five the researcher presented the summary of findings and recommendations on project design and implementation success in Rwanda.

According to findings analysis in chapter four MIIP was satisfactory designed as the mean response was 79.79% of the respondents analysed the budget and came to appraise it as appropriately budgeted, so do they on their remuneration satisfaction for those who participated in the implementation and post implementation effects analysis where the means were measured at 71.76% and 86.98% respectively. Beneficiaries’ participation in the implementation process was low as the mean participation was measured at 32.15%.
Although the assessment of a project’s implementation success can not be appraised on the basis of its design separately, if other factors remain constant it has been observed that scoping and project outcome are attributed by respondents of MIIP 84.63% and 84.62% the success of MIIP respectively as calculated means. Other findings have revealed that project staff accredited project timeliness successes in MIIP 87.63% as calculated mean from the whole views. Therefore, project staff declared at 86.66% that they have successfully gained experience in the implementation process of MIIP.

The examination of the effects of MIIP design to its implementation success by the respondents revealed that its design contributed to its timeliness as the correlation coefficient between the two variables was calculated to be 0.93; meaning MIIP timing was perfectly positively correlated to its timeliness according to the scale which was presented in section 3.5. MIIP cost control was noted to be successful as a 100% of respondents (project staff) have confirmed that there was no budget overruns, mentioning that all activities were carried as projected. MIIP has contributed to solve floods at 100% according to respondents as there were no floods noticed from the period of implementation of the project, landslides solve were correlated to project outcome at 0.82, making MIIP outcome perfectly positively correlated to its quality delivery as landslides were considerably reduced, low productivity solve was correlated to project outcome at 0.92, making MIIP outcome perfectly positively correlated to its quality delivery and erosion solve was correlated to project outcome at 0.88, making MIIP outcome perfectly positively correlated to its quality delivery. Respondents have confirmed the intervening variable role in the implementation success of MIIP to be correlated at 0.81, meaning the intervening variable was perfectly positively correlated to the implementation success of MIIP.
5.3 Recommendations

It is recommended that project designers should conduct a stakeholder analysis before and during any project design and implementation process, because some important needs for beneficiaries may not be satisfied at the end of the project, not because of lack of means but misinformation of what was primordial preoccupation.

It is recommended to project implementers to involve at bigger level the beneficiaries of the project to incite them understand the delivery process and allow them express their needs and modifications at any level of implementation as this study concluded that only 32.15% of beneficiaries were involved.

It is recommended to project stakeholders to think of quality of project outcome together with the experience the project implementation will leave while they are setting any project objectives. In order to gain as much as possible in any implemented project in terms of moral and material output.

5.4 Suggestions for Further Study

The following recommendations are suggested to further research:

It is recommended that further research on project design and implementation success be conducted on other massive beneficiaries’ project in Rwanda to extend the knowledge on the tips to consider while designing such projects in Rwanda.

Further research has to be made on the post implementation effects especially in long run to beneficiaries, in order to make sure that projects outcome are impactful to beneficiaries not only during the implementation period, but longer after that.
REFERENCES

APPENDICES

APPENDIX A: Research Authorization

SCHOOL OF POST GRADUATE STUDIES
RESEARCH AUTHORIZATION

23rd February, 2015

TO WHOM IT MAY CONCERN

Dear Sir/Madam,

MR. KWIZERA YVES CHRIST- MBA/3759/12

This is to confirm that the above named person is a bona fide student of Mount Kenya University (Kigali Campus). He is currently carrying out research work to enable him complete his Master of Business Administration (Project Management Option) degree program. The title of his research is:

PROJECT DESIGN AND IMPLEMENTATION SUCCESS IN RWANDA
A CASE STUDY OF MUYEBE II PROJECT

The information received will be confidential and for academic purpose only.

Any assistance accorded him to complete this study will be highly appreciated.

Thank you.

[Signature]

23/02/2015

Tom Mulegi PhD
COORDINATOR, SCHOOL OF POST GRADUATE STUDIES
APPENDIX B: INTERVIEW SCHEDULES
(To be administered by the researcher)

I. For Beneficiaries
I.0. General and Demographic Questions

1. Do you know MIIP? ☐ Yes ☐ No

2. Are you a beneficiary? ☐ Yes ☐ No

4. Age: ☐ Under 20 ☐ 20-40 ☐ 41-60 ☐ Above 60

5. Gender: ☐ Male ☐ Female

6. In which domain was MIIP among the following?
 ☐ Religion ☐ Environment protection ☐ Energy

I.A. Analysis of MIIP design

1. At which level do you think MIIP had necessary funds for the purpose?
 Level 1 ☐ 20-40%
 Level 2 ☐ 41-60%
 Level 3 ☐ 61-80%
 Level 4 ☐ 81-100%

2. Have you worked in MIIP? ☐ Yes ☐ No

3. At which level have you been satisfied by your remuneration?
 Level 1 ☐ 20-40%
 Level 2 ☐ 41-60%
 Level 3 ☐ 61-80%
 Level 4 ☐ 81-100%
4. At which level do you think MIIP was allocated enough time for the purpose?

- **Level 1**: 20-40%
- **Level 2**: 41-60%
- **Level 3**: 61-80%
- **Level 4**: 81-100%

I.B. Assessment of MIIP Success

1. At which level do you think MIIP has covered an important area in need?

- **Level 1**: 20-40%
- **Level 2**: 41-60%
- **Level 3**: 61-80%
- **Level 4**: 81-100%

2. At which level do you think MIIP have accomplished an important work at the field?

- **Level 1**: 20-40%
- **Level 2**: 41-60%
- **Level 3**: 61-80%
- **Level 4**: 81-100%

I.C. Examination of MIIP design effects to its implementation success

1. How has MIIP performed during the implementation period viewing timeliness and cost control?

- **Bad**: 0-49%
- **Good**: 50-74%
- **Excellent**: 75-100%
2. How well have the results of MIIP affected your lives after its implementation period until now?

Low 0-49%
Medium 50-74%
High 75-100%

3. At which level have these problems been solved by MIIP in your community so far? (1) stands for 20-40%, (2) stands for 41-60%, (3) stands for 61-80% and (4) stands for 81-100%

<table>
<thead>
<tr>
<th>Problems</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Floods</td>
<td></td>
</tr>
<tr>
<td>Land slides</td>
<td></td>
</tr>
<tr>
<td>Low productivity</td>
<td></td>
</tr>
<tr>
<td>Disasters</td>
<td></td>
</tr>
</tbody>
</table>

I.D. Intervening variable questioning

1. The government policy of environmental protection through its sensitization contributed to implementation success of MIIP.

Low 0-49%
Medium 50-74%
High 75-100%

Thank you for your co-operation!
II. For Project Staff

II.0. General and Demographic Questions

1. Do you know MIIP? ☐ Yes ☐ No

2. Are you MIIP team member? ☐ Yes ☐ No

3. Age: ☐ 20-40 ☐ 41-60

4. Gender: ☐ Male ☐ Female

II.1. MIIP effects to staff experience

1. What was your task in MIIP? ..

2. What lessons have you learned from MIIP?
 ☐ Organization skills ☐ Team playing skills
 ☐ Stakeholder satisfaction ☐ Time keeping

3. In your opinion at what level was MIIP a success viewing the following factors? (1) stands for 20-40%, (2) stands for 41-60%, (3) stands for 61-80% and (4) stands for 81-100%

<table>
<thead>
<tr>
<th>Factors</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Project outcome</td>
<td></td>
</tr>
<tr>
<td>Cost control</td>
<td></td>
</tr>
<tr>
<td>Timeliness</td>
<td></td>
</tr>
<tr>
<td>Experience gained</td>
<td></td>
</tr>
</tbody>
</table>

4. How has MIIP design affected its implementation in terms of cost control, timeliness and scope coverage?
5. The government policy of environmental projection through its sensitization contributed to implementation success of MIIP.

- Low 0-49%
- Medium 50-74%
- High 75-100%

Thank you for your co-operation!
APPENDIX C: MAP OF RWANDA

(Showing Muhanga District Situation in Red Colour)
MIIP was implemented in Nyabinoni Sector painted in Pink (Northiest Sector)